在 XeCl* 3080Å 激光器中的三体 离子-离子复合研究

郑承恩

(中国科学院上海光学精密机械研究所)

提 要

计算了在惰性稀释气体中 Xe⁺+G⁺+M \longrightarrow Xe^{Cl*}+M 反应的复合速率 (M=He, Ne, Ar)。结果表明,室温时在稀释气体 Ar, Ne, He 中的复合速率在 2 atm, 6.5 atm, 17 atm 时分别达到最大值 2.4 cm³ sec⁻¹, 2.5 cm³ sec⁻¹, 3.3 cm³ sec⁻¹, 结果还表明,在气体密度一定时,复合速率随温度的上升而急剧地 减小。

一、引 言

XeO1*3080 Å 准分子激光器以其输出能量密度比较高,运转寿命比其它同类惰性气体 卤化物激光器寿命更长而受到人们注意。研究指出,无论用高能电子束激发还是用电子雪 崩放电激励,激光上能态 XeO1*(B)的形成主要通过如下反应来完成^{口, 21}:

$$Xe^{+} + Cl^{-} + M \longrightarrow XeCl^{+} + M, \qquad (1)$$

其中 M 是中性稀释气体,通常选用 He, Ne 或 Ar, 其选择在很大程度上与激发方式以及激 发强度有关。因此,比较全面地了解反应(1)的速率常数与变化特点对于进一步研究这种激 光器的动力学过程并掌握其运转规律有一定意义。本文介绍了对这个反应的复合系数的一 些计算结果。

二、计算方法与结果

在离子-离子三体复合过程的研究中,以 Natanson 的理论比较成功^[3,4],在从 0.1~25 atm 的整个气压范围内,根据这个理论计算的空气的三体复合系数与实验结果相符合^[4], Bates 与 Flannery 进一步发展了这个理论^[5,6],他们引入了和质量密度有关的正负离子的 俘获半径,考虑了离子在库仑场中运动的曲率性效应,并把复合系数的计算推广到具有三种 不同质量气体成分的情况。本文对离子-离子三体复合系数的计算方法主要是根据这些理 论结果进行的^[7]。在计算中,还必须知道离子在混合气体中的平均自由程 \₄ 与迁移率 K₄。 在本文中, \₄ 是由离子的平均扩散截面 Q,算出的, 面 Q,的数值则是根据 Champman-Enskog 的离子-原子相互扩散系数理论计算获得的^[8]。本文使用的离子迁移率数据列于表 1,在这些数据中,部分采用已发表的实验结果^[9~11],其余数据因作者尚未见诸于报道,故应

收稿日期: 1982年9月10日,收到修收稿日期: 1982年12月15日

表1 离子 Xe⁺ 与 Cl⁻ 在 He, Ne 或 Ar 中的迁移率(cm²/v·sec), T = 300 K Table 1 Mobilities of ions Xe⁺ and Cl⁻ in He, Ne or Ar. unit: cm²/v·sec. T = 300K

 M
 Xe⁺
 Cl⁻

 He
 18*
 £0.3**

 Ne
 4.8
 7.7

 Ar
 2.1
 2.87***

 * [9]
 *

** [10] *** [11]

用完全的 Langevin 离子迁移率理论计算得到¹⁸³。

图 1 是本文计算的反应 Xe⁺+Cl⁻+M→XeCl^{*}+M(M=He, Ne, Ar)的三体 Xe⁺-Cl⁻

图 1 复合系数 a_x 随中性气体压力的变化 Fig. 1 Recombination coefficient a_x for the process as a function of the neutral gas pressure

复合系数 α_{x} 随中性气体压力 P 的变化。计 算时设稀释气体 M 的数 密度比 Xe⁺与 Cl⁻ 的气体密度高得多(下述计算均采用 同一近 似),这一假定对大 部分 XeCl^{*} 3080 Å 激 光 器都是成立的。图 1 曲线变化有一个共同的 特点,即随着气压的升高, α_{x} 逐新达到最大, 然后逐渐变小。理论结果表明,在高气压极限 $(\lambda_{i} \rightarrow 0)$ 与低气压极限 $(\lambda_{i} \rightarrow \infty)$,可以得到 $\alpha_{x} \longrightarrow B/P 与 \alpha_{x} \longrightarrow P \cdot A$ 的关系 此 处 A 与 B 是和气压无关的常数),由图 1 也 可看出曲线的这种变化趋势。从图 1 还可看 出,复合系数 α_{x} 显著地与稀释气体 种类有 关。Basov 等人对反应(1)采用 $\alpha_{x}=2\times10^{-6}$ cm³ sec^{-1(13,3)},显然这仅适合于某些特定情

况, 例如用 Ne 稀释时, 在 $P=2.5\sim4.5$ atm 的条件下, 其近似是良好的; 而用 He 稀释时, 在 整个常用的激光器气压范围内 ($P \leqslant 5$ atm), 上述数值比本文计算结果偏大 4 倍以上。

图 2(a), (b), (c) 是在稀释气体分别采用 He, Ne 或 Ar 时, 三体复合系数 α_x 随温度 的变化。图中 $n_0=2.45 \times 10^{19}$ cm⁻³ 是在 300 K 时 1 atm 稀释气体的原子数密度。图中 每 条曲线相应于图示的固定的气体密度数值。计算中忽略了离子平均自由程 λ_i 的温度效应¹³¹, 但考虑了离子迁移率随温度变化的修正效应¹⁸¹。这些曲线均表明,随着激光放电气体温度 的升高,复合系数 α_x 急剧地单调降低。

三、结 束 语

进一步分析本文计算结果,可以得到如下推论:

1. 对于不同的稀释气体,反应(1)的复合系数在不同的气压区域达到最大值,在选择稀

.

图 2 在几种不同的中性气体密度条件下,复合系数 α_y 随中性气体温度的变化(n₀=2.45×10¹⁹ cm⁻³)

Fig. 2 Recombination coefficient α_N for the process as a function of the neutral gas temperature for various neutral gas densities $(n_0 = 2.45 \times 10^{19} \,\mathrm{cm}^{-3})$

释气体种类与工作压力时,应考虑到这个问题。用Ar稀释时, α_v 在 2 atm 左右有最大值 2.4×10⁻⁵ cm³/see,在这个气压附近,它比用 He 或 Ne稀释的 α_s 高得多。因此,当激光器 运转于这个气压范围 (P < 3 atm)时,在不影响放电均匀性以及不过分降低放电电子温度的 前提下,在原来用 He 或 Ne稀释的基础上,再加入适量的 Ar,有助于提高三体复合系数 α_s ,对提高激光输出效率有利。另外,实验上观察到^[13],在通常放电激光器的运转气压范围 (P < 5 atm)内,在同样的气压与放电条件下,用 Ne 稀释比用 He 稀释可获得高得多的激光 输出能量与本征效率,这种情况除了与用 Ne 稀释比用 He 稀释有更高的平均电子能量有关 A_s ,另一个重要因素可能与用 Ne 稀释比用 He 稀释有更高的三体复合系数数值有关。

2.由计算结果可见,反应(1)的复合速率受温度变化影响极为显著。众所周知,XeOl* 激光器的激光下能级是弱束缚结构(束缚能 $\Delta E \simeq 255 \text{ cm}^{-1}$),温度的升高虽然使下能级的猝 灭速率 k(T) 升高 ($k(T) = k_0 e^{-\Delta E/kT}$)^[14],但也引起了上能级复合系数的显著降低。例如,用 Ne 稀释时,在 300 K 条件下工作气压取 3 atm,维持气体密度不变,当气体温度升高到 500 K 时,反应(1)的复合系数数值降为原来的一半,而下能级的猝灭速率却仅仅约增加为 原来的 1.6 倍。因此升高温度对提高 XeOl* 激光输出效率不一定有利,至少不象 XeF* 激 光器那么有利。在 XeF* 激光器中,实验已经证实在 500 K 时的激光输出效率比室温情况 下的数值高得多^[15]。之所以有这种差别,原因之一是 XeF* 激光下能级 XeF*(X)的束缚能 $\Delta E \simeq 1170 \text{ cm}^{-1}$,这比 XeOl*(X)的 ΔE 高得多。因此随着温度的升高,XeF* 激光下能级 猝灭速率的增加比 XeOl* 情况快得多。例如当温度同样从 300 K 升高到 500 K,XeF* 激 光下能级猝灭速率升高了几乎一个数量级,这比 XeOl*(X) 情况大得多。

参考文献

- [1] W. L. Nighan, R. T. Brown; Appl. Phys. Lett., 1980, 36, No. 7 (Apr), 498.
- [2] L. A. Levin, S. E. Moody et al.; IEEE J. Q. E., 1981, QE-17, No. 12 (Dec), 2282.
- [3] Г. Л. Натансон; Ж. Т. Ф., 1959, 29, №. 11, 1373.
- [4] E. W. Medaniel; «Collision Phenomena in Ionized Gases», (John Wiley & Sons, Inc., 1964), Chapter 12.
- [5] D. R. Bates, M. P. Flannery; J. Phys. B: (Atom. Molec. Phys.), 1969, 2, No. 2 (Feb), 184.
- [6] M. R. Flannery; Chem. Phys. Lett., 1978, 56, No, 1 (Mar), 143.
- [7] L. Loeb; «Basic Processes of Gaseous Electronics», (University of California Press, Berkley, 1955), Chapter
 6.
- [8] ibid, Chapter 9.
- [9] C. L. Chen; Phys. Rev., 1963, 131, No. 6 (Sep), 2550.
- [10] I. Dotan, D. L. Albritton et al.; J. Chem. Phys., 1977. 66, No. 5 (Mar), 2232.
- [11] I. Dotan, D. L. Albritton; J. Chem. Phys., 1977, 66, No. 11 (Jan), 5238.
- [12] N. Basov, E. P. Glotov et al.; Sov. Tech. Phys. Lett., 1979, 5, No. 4 (Apr), 183.
- [13] 郑承恩等;《电子学报》,1983,(待发表)。
- [14] R. W. Waynant, J. G. Eden; Appl. Phys. Lett., 1980, 36, No. 4 (Feb), 262.
- [15] M. Rokni, J. H. Jacob et al.; Appl. Phys. Lett., 1980, 36, No. 4 (Feb), 243.

Study of three-body ion-ion recombination in XeCl* 3080 Å laser

ZHENG CHENGEN

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 10 September 1982, revised 15 December 1982)

Abstract

Recombination rates for processes $Xe^+ + Cl^- + M \longrightarrow XeCl^* + M$ (M = He, Ne or Ar) have been calculated. It has been found that the recombination rates in buffer rare-gases He, Ne, Ar at 300 K reach the maximums of $3.3 \text{ cm}^3 \text{ sec}^{-1}$, $2.5 \text{ cm}^3 \text{ sec}^{-1}$, $2.4 \text{ cm}^3 \text{ seo}^{-1}$, at pressures of 17 atm, 6.5 atm, 2 atm respectively. In addition, the recombination rates drastically decrease with increasing gas temperature at fixed gas density.